Форма входа

Главная » 2013 » Ноябрь » 19 » Скачать Неустойчивость гравитационных фронтов пропитки и процессы пальцеобразования в ненасыщенной пористой среде. Гоголашвили, Булат бесплатно
Скачивание файла!Для скачивания файла вам нужно ввести
E-Mail: User2
Пароль: 888888
Скачать файл.
00:39
Скачать Неустойчивость гравитационных фронтов пропитки и процессы пальцеобразования в ненасыщенной пористой среде. Гоголашвили, Булат бесплатно
Неустойчивость гравитационных фронтов пропитки и процессы пальцеобразования в ненасыщенной пористой среде

Диссертация

Автор: Гоголашвили, Булат Эдуардович

Название: Неустойчивость гравитационных фронтов пропитки и процессы пальцеобразования в ненасыщенной пористой среде

Справка: Гоголашвили, Булат Эдуардович. Неустойчивость гравитационных фронтов пропитки и процессы пальцеобразования в ненасыщенной пористой среде : диссертация кандидата физико-математических наук : 01.02.05 / Гоголашвили Булат Эдуардович; [Место защиты: Казан. гос. ун-т] Казань, 2008 121 c. : 61 08-1/159

Объем: 121 стр.

Информация: Казань, 2008


Содержание:

Введение
1 Определение гидравлических функций пористой среды
11 Модели невзаимодействующих капилляров
111 Модель связки цилиндрических капилляров
112 Модель Туллера-Ора
12 Модель взаимодействующих капилляров
121 Решетка
122 Капилляры
13 Гидравлические функции при дренаже
131 Капиллярная кривая
132 Относительная фазовая проницаемость
133 Верификация модели по экспериментальным данным для дренажа
14 Гидравлические функции при пропитке
141 Капиллярная кривая
142 Относительная фазовая проницаемость
15 Кривая первичной пропитки
2 Теоретический анализ релаксационной модели влагопереноса
21 Устойчивость уравнений влагопереноса: общие результаты
211 Модель Ричардса
212 Анализ устойчивости модифицированной модели Ричардса
22 Релаксационная модификация модели Ричардса
221 Термодинамический анализ
222 Модели Р- и S-релаксации
223 Учёт гистерезиса в релаксационной модели
23 Анализ релаксационных моделей на решениях типа бегущей волны
231 Модель Р-релаксации
232 Модель 5-релаксации
24 Анализ устойчивости модели Р-релаксации
25 Двумерное моделирование процесса пальцеобразования
3 Верификация релаксационной модели Ричардса
31 Эксперименты D A DiCarlo
32 Модель
33 Определяющие уравнения
34 Конкретизация гидравлических функций К и Р
35 Решение типа бегущей волны
36 Определение коэффициента релаксации
37 Результаты расчётов

Введение:

Угроза поверхностного заражения подземных вод токсичными веществами при авариях на промышленных предприятиях и складах химических продуктов является в наше время актуальной экологической проблемой. Попавшие на дневную поверхность водорастворимые загрязнения мигрируют с потоком влаги через зону аэрации к зеркалу грунтовых вод и могут в конечном итоге нанести непоправимый ущерб природным экосистемам обширного региона. Защитные свойства зоны аэрации, связанные с адсорбцией загрязнителя частицами почвы, во многом определяются режимом фильтрационных потоков.
Многочисленные эксперименты [55, 45, 83, 64] свидетельствуют о том, что в ненасыщенных грунтах движимый гравитацией однородный фронт пропитки, как правило, распадается на устойчиво развивающуюся систему потоков («пальцев»). Понимание причин, вызывающих неустойчивость таких фронтов, и учёт этого эффекта необходимы для верного предсказания интенсивности переноса влаги и водорастворимых загрязнений от дневной поверхности к зеркалу грунтовых вод. Действительно, наличие предпочтительных путей, порождаемых распадом фронта пропитки на отдельные пальцы, существенно уменьшает время миграции влаги в зоне аэрации, снижая тем самым её защитную роль.
Практическая важность и научная значимость феномена пальцеобразо-вания диктуют необходимость разработки адекватной математической модели этого явления. К сожалению, традиционные модели влагопереноса (например модель Ричардса) оказываются в данной ситуации малопригодными, так как не принимают в расчёт динамических эффектов, играющих значительную роль при образовании и развитии пальцев. Многочисленные попытки релаксационной модификации модели Ричардса дали определённое понимание некоторых аспектов проблемы, однако построение целостной модели остаётся всё ещё делом будущего.
Одной из характерных особенностей пальцев, отмечаемой всеми экспериментаторами, является немонотонность профилей давления и насыщенности в их поперечном сечении. Эта немонотонность приводит к тому, что насыщенность в теле пальца оказывается значительно выше, чем насыщенность вне его. В то же время поток влаги, определяемый градиентом давления, оказывается направлен к оси пальца. В этой ситуации высоконасыщенный палец не отдает влагу окружающей пористой среде, а, напротив, иссушает её.
На самом деле возможность движения влаги в пористой среде в направлении градиента влажности (т. е. из областей с малой влажностью — в области с большой) была впервые обнаружена не в экспериментах по паль-цеобразованию, хотя и приблизительно в то же время. По-видимому первые наблюдения этого явления были сделаны в работах Абрамовой [1,2] и Аллера [47, 48, 49]. Позднее опыты Абрамовой по сути были повторены Collis-George et al. [35]; аналогичные явления наблюдались в экспериментах Дмитриева [14] и Бондаренко [5], а также были воспроизведены Роде и Романовой [24]. Именно эти эксперименты впервые поставили под сомнение применимость модели Ричардса для описания переноса влаги в ненасыщенной пористой среде.
Опишем вкратце суть поставленных экспериментов. Во всех них исследователи изучали движение «подвешенной» (по терминологии А. Ф. Лебедева [19]) влаги в вертикальной колонке, заполненной образцом природного грунта. Грунт в колонке промачивали водой, после чего с её верхней поверхности было организовано испарение (как при помощи нагрева электрической лампой, так и естественным путём без нагревания при комнатной температуре). Давление снималось при помощи ряда установленных с определённым шагом тензиометров, влажность определялась по исследованию взятых с разной глубины образцов почвы.
Во всех экспериментах исследователи отмечали восходящее движение влаги из глубины почвы к поверхности испарения, которое, в особенности на первых стадиях процесса, совершалось при отсутствии градиента влажности и иногда даже в направлении возрастающей влажности.
Описанные эксперименты не могли быть объяснены в рамках традиционно используемой в почвоведении диффузионной теории. Согласно ей, перенос влаги в ненасыщенной пористой среде описывается уравнением Ричардса [77, 78]:
Здесь s — влажность, t — время, х — пространственная координата, D(s) — коэффициент диффузивности, D(s) = Кдф/Os, где К — коэффициент вла-гопроводности, ip = i/)(s) — капиллярный потенциал влажности.
Кроме натурных экспериментов, о неприменимости диффузной теории по крайней мере для нестационарных процессов свидетельствуют и резульО таты численного моделирования. В качестве примера можно сослаться на работу Бондаренко и др. [6], в которой исследовалась степень отклонения численно рассчитанных по уравнению (1) значений влажности s от экспериментально наблюдаемых значений на различных стадиях сушки. Из сравнения этих величин видно, что расчётные значения даже качественно не совпадают с экспериментом на первых стадиях процесса.
Аллер был также первым, кто попытался теоретически обосновать описанный феномен [49, 50]. Для этого он модифицировал уравнение (1), заменив в нём капиллярный потенциал ф на так называемый эффективный потенциал влажности t,bc. Этот эффективный потенциал конструируется в виде суммы где А — некий варьируемый коэффициент. После этой подстановки уравнение (1) принимает вид
Предложение Аллера вызывает два естественных вопроса: а) воспроизводит ли указанная модификация экспериментально наблюдаемые факты и б) насколько данная модификация является теоретически обоснованной.
Что касается первого вопроса, то ответ на него можно считать положительным. Численные эксперименты [22, 26], проведённые по модели Аллера для значений А = 0 и А — 100 показали, что при А = 100 происходит поток влаги вдоль градиента влажности, в то время как при А — 0 этот эффект не наблюдается. В другой работе [7] численные расчёты по модели Аллера сравнивались с экспериментальными профилями влажности на различных стадиях сушки. При А — const экспериментальные и рассчитанные кривые демонстрируют неплохое согласование на начальных стадиях процесса. При этом было отмечено, что величина А не остаётся постоянной в процессе сушки, хотя никаких предположений о виде зависимости А от времени не было сделано.
Несмотря на всё сказанное, против модели Аллера были выдвинуты многочисленные возражения. Критики указывали на то, что уравнение (2) и рассуждения, приводящие к нему, аналогичны таким, которые обычно используются для описания движения жидкости в трещиновато-пористых средах. Однако обычная почва имеет существенно более однородную структуру, и в ней едва ли можно выделить крупные транспортные каналы и мелкие питающие капилляры, как это сделал Аллер.
По мнению Роде [25], теоретическое обоснование, выдвигаемое Алле-ром, является чисто умозрительным. Роде считает, что Аллер попросту не фе = ф А — , принял в расчёт гистерезис зависимости влажности от давления. Между тем отчётливо показано [66, 99, 15], что после того, как инфильтрация сменяется испарением, распределение давления вследствие влияния гистерезиса должно сразу же измениться. Это создаёт предпосылку к передвижению влаги к испаряющей поверхности не только без появления соответствующего градиента влажности, но даже в направлении этого градиента, хотя и против градиента давления. Имеются теоретические расчёты [17], показывающие, что обычная модель Ричардса с гистерезисом ij->{s) даёт движение воды в направлении градиента влажности.
Среди других подходов к модификации модели Ричардса нельзя не упомянуть работы А. В. Лыкова [20, 21]. Лыков исходит из совершенно других соображений, чем Аллер, хотя его уравнение также предназначено для более полного учёта нестационарности. Вывод Аллера базируется на рассмотрении капиллярной модели, тогда как Лыков получает своё уравнение на основе методов термодинамики необратимых процессов. Он рассматривает релаксационные процессы в бесконечно малом элементе среды и записывает уравнение движения жидкости в пористой среде в виде:
Кулик [18] исследовал уравнения Аллера и Лыкова с точки зрения инвариантности относительно непрерывных групп преобразований. Его анализ показывает, что ни то, ни другое уравнение нельзя принять в качестве универсального уравнения движения влаги в почве. Модель Аллера, созданная специально для объяснения экспериментов по оггоку влаги при испарении, оказывется неспособна описать приток влаги в почву при пропитке. В то же время модель Лыкова, исходящая из экспериментов по инфильтрации жидкости в горизонтальную колонку, входит в противоречие с другой группой экспериментов. Кулик видит выход из этой ситуации в привнесении в модель гистерезисных свойств. По его мнению для того, чтобы быть равно пригодной как для пропитки, так и для дренажа, в модели Аллера коэффициент А должен испытывать очень сильный гистерезис. Коэффициент Лыкова At должен либо быть очень малым, либо также быть подвержен сильному гистерезису. Кулик также предлагает своеобразный гибрид уравнений (2) и (3) в следующем виде: где коэффициенты Л и Л] должны испытывать очень сильный гистерезис.
Возрождение интереса к модификации уравнения Ричардса было связано с появлением большого количества экспериментальных фактов, касающихся экспериментов по пальцеобразованию. Как и в случае с ранними экспериментами по движеиию влаги в природных грунтах, описать этот феномен в рамках традиционной модели не оказалось возможным. Интересно отметить, что и в этом случае при построении модели весьма продуктивным оказалось привлечение термодинамических соображений, а также учёт в явном виде гистерезиса гидравлических функций. Наибольший вклад в теорию нестационарных течений в ненасыщенных пористых средах в настоящее время принадлежит S. Majid Hassanizadeh. В серии работ [51, 52, 53, 54] он последовательно применяет методы неравновесной термодинамики к процессам перераспределения влаги в поровом пространстве. Записывая балансовые соотношения для свободной энергии Гельм-гольца на границе раздела фаз, Hassanizadeh получает необходимое ограничение, накладываемое на возможные релаксационные модификации модели Ричардса в виде энтропийного неравенства
Им также была предложена одна из таких модификаций, известная как модель Я-релаксации:
Тщательный математический анализ этой модели был выполнен Cuesta et al. [36]. Предполагая, что зависимости P(s) и K(s) имеют степенной характер, ими было доказано существование и единственность решения типа бегущей волны уравнений (1), (4). Также был получен критерий немонотонности таких решений и исследовано их поведение при стремлении начальной водонасыщенности среды к нулю.
Привнесение гистерезисных свойств в предложенную Hassanizadeh модель было выполнено в работе Беляева и Hassanizadeh [30]. Авторы использовали простейшую модель гистерезиса (так называемую "play-type"), в которой все сканирующие кривые представляли собой вертикальные отрезки s = const.
Анализ устойчивости решения типа бегущей волны уравнения Ричардса, а также некоторых её модификаций (релаксационной и стефановского типа) был проведён Егоровым и Даутовым [13]. Они доказали, что модель Ричардса в своём исходном виде абсолютно устойчива, а её стефановская модификация — абсолютно неустойчива и, следовательно, оба этих случая не подходят для моделирования пальцев. В отличие от них, релаксационная модификация демонстрирует условную неустойчивость, т. е. устойчи
L(p-P(s))> 0. dt
4) вость на высокочастотных возмущениях и неустойчивость на низкочастотных. Это приводит к наличию минимума на дисперсионной кривой, положение которого определяет характерный масштаб системы пальцев, генерируемых изначально однородным фронтом пропитки. Эти же авторы предложили иную возможность релаксационной модификации модели влагопереноса — модель S-релаксации. Вместо зависимости (4) в этом случае используется релаксационный закон вида ds
Tdi = S(P) 3' (5)
Разумеется, всякая математическая модель должна быть тщательно протестирована и верифицирована по результатам натурных экспериментов. Только после этого можно делать окончательное заключение о её достоверности и практической применимости. С другой стороны, даже самый скрупулезный и аккуратный лабораторный эксперимент немного стоит без надёжного теоретического фундамента и непротиворечивых моделей. Накопленный массив экспериментальных данных с одной стороны и достижения теоретиков с другой позволяют в настоящее время значительно приблизиться к построению законченной модели влагопереноса в сухих средах.
Изложенное выше определяет основную цель данной работы, заключающуюся в построении и верификации математической модели влагопереноса в ненасыщенном грунте, способной адекватно описать процессы образования и развития пальцев.
Остановимся подробнее на содержании диссертации. Она состоит из введения, трёх глав, заключения, 61 рисунка, 7 таблиц. Список использованной литературы содержит 99 наименований.
Просмотров: 161 | Добавил: Борис81 | Рейтинг: 0.0/0
Календарь
«  Ноябрь 2013  »
ПнВтСрЧтПтСбВс
    123
45678910
11121314151617
18192021222324
252627282930